UNIVERSITY OF COLOMBO, SRI LANKA

FACULTY OF ARTS

SECOND YEAR EXAMINATION IN ARTS (ONLINE), SEMESTER II - 2019/2020 GYG 2217 -STATISTICS

OPEN BOOK EXAMINATION

Instructions to Students:

- The question paper starts on page 2
- All written assessments must be <u>handwritten</u>. Handwriting must be <u>clear and</u> readable.
- Answers should be written on an <u>A4 size paper</u> (ruled/lined paper/or otherwise), using a <u>black ball point pen</u>.
- As is the case of an in-person examination, word processing or type setting of answers will not be permitted. This rule does not apply to any candidate who has been exempted by the University under applicable bylaws (e.g., due to visual impairment).
- The <u>index number must be written on the top right-hand side</u> of each page of the answer script. Do not write your name anywhere on the answer script.
- Number the pages of the answer script using the following format at the **bottom of** the page: E.g., if it consists of 5 pages 1/5, 2/5...etc.
- Use the <u>common front page</u> (provided on LMS) as the first page of the answer script. You may print, or hand write the front page which must be the first page of your assessment.
- The **total number of pages** should be indicated on the front page of the answer script.
- Scan/take photos of the answer script and convert it to a single PDF file in the order of the page numbers.
- The full page of the answer script must be properly covered in the scanned image, and the scanned image must be clear/readable.
- LMS does not permit individual pages to be uploaded separately.
- The only acceptable file format is PDF. The PDF file should be named with your index number, e.g. A 12345
- Uploading answer scripts as JPEG/JPG or any other form will not be permitted.
- Complete and upload the final version of the answer script to LMS <u>within the stipulated 24 hours.</u>
- Once the answer script has been uploaded to LMS, take <u>a screen shot of the full</u>
 <u>page</u> of the LMS with the word 'submitted', as an acknowledgement and keep with you.
- If there is an unexpected technical issue with the uploading of an answer script to LMS, you may send your answer script via email to exam2@arts.cmb.ac.lk within the stipulated 24-hour period.

UNIVERSITY OF COLOMBO, SRI LANKA FACULTY OF ARTS

SECOND YEAR EXAMINATION IN ARTS (ONLINE) SEMESTER II - 2019/2020 GYG 2217 -STATISTICS OPEN BOOK EXAMINATION

Duration: <u>24 hours</u> for completion and submission of answer scripts to LMS. Answer <u>3 questions</u> only

1.	(a)	What	is Descr	riptive S	Statistics	?						
											(02 n	narks)
	(b)	Explai	n differe	ences b	etween	Data ar	nd Inform	nation	with ex	amples.		
											(04 n	narks)
	(c)	The fo	ollowing	is the r	number	of minu	tes that	25 pec	ple exe	rcised p	er week	ζ.
		108	139	120	123	120	132	123	131	131	157	150
		124	111	101	135	119	116	117	127	128	139	119
		118	114	127								
		(i)	Prepar	re a frec	quency	distribut	ion tabk	e with t	five class	ses (100	0 – 112	, 112
			- 124	1) i	ncluding	g class	interval	, freque	ency, m	nid valu	e, cum	ulative
			freque	ncy, and	d relativ	e cumu	lative fi	requenc	y.			
											(06 n	narks)

(ii) Create a histogram, frequency polygon and Orgive using the table you prepared in (i).

(06 marks)

(iii) Interpret your results.

(02 marks)

(Total 20 marks)

												(04 m	arks)
((b)	What Measu					betwee	n M	leasures	of	Central	Tendency	and
												(04 m	arks)
((c)	The m	arks (of 20	student	ts in	the Statis	stics	Examina	tion	are as fo	llows.	
		30	21	1:	5 1	14	10	19	14	22	2 27	30	20
		18	23	13	5 1	16	16	15	29	28	3 13		
		(i)	Calc	culate	the sa	mple	mean, n	nediai	n and mo	ode.			
												(03 m	arks)
		(ii)	Calc	ulate	the sa	mple	standard	dev	iation.				
												(03 m	arks)
		(iv)	Find	the	quartile	es.							
												(03 m	arks)
		(iv)	Drav	wab	oxplot	for th	ne above	data	set.				
												(03 m	arks)
											(Total 20 m	arks)
3.	(a)	What i	is Chi	-squa	re Test								
												(02 m	arks)
	(b)	What test?	are 1	the d	ifferenc	ces b	etween	good	ness-of-1	fit te	st and c	contingency	table
												(04 m	arks)
	(c)		ical		•							relative to ult support	

Define Mean, Median, Mode and Standard Deviation

2.

(a)

No. of Yeast cells in the square	Observed Frequency	Expected Frequency
0	103	106
1	143	141
2	98	93
3	42	41
4	8	14
5	6	5

(06 marks)

(d) The severity of a disease and blood group were studied in a research project.

The findings are given in the following table. Can there be a correlation between the severity of the disease and the blood group?

Severity		Blood Group								
of disease	О	A	В	AB	Total					
Severe	51	40	10	9	110					
Moderate	105	103	25	17	250					
Mild	384	527	125	104	1140					
Total	540	670	160	130	1500					

(08marks)

(Total 20 marks)

4. (a) What is Testing Hypotheses?

(02 marks)

- (b) What are the differences between One Sample Test and Two Sample Test? (04 marks)
- (c) A random sample of 20 cows was selected from a large dairy Farm. The milk yield in one week was recorded, in kilograms, for each cow. The results are given below.

179.6 152.0 113.3 121.6 133.4 152.5 165.1 111.7 170.7 123.2 140.9 156.1 170.3 165.5 155.1 101.7 170.7 113.2 130.9 146.1

At the $\alpha=0.05$ significance level, test the claim that the mean weekly milk yield is greater than 130 kg.

(06 marks)

(d) The following statistics assignment marks from the second-year students are following. At the $\alpha=0.05$ significance level, test mean is equal 60.

61	65	67	62	50	87	66	60	64	64	62
61	51	64	55	56	60	57	68	56	62	70
51	72	66	63	55	62	75	63	61	60	69
59	90	91								

(08 marks)

(Total 20 marks)

5. Age of person in years and low density lipoproteins (LDL) cholesterol in mg/dl shows following table.

Age	48	36	52	57	35	34	48	68	47	58	60	60	50	65
LDL	121	102	145	154	104	102	129	208	145	128	175	183	166	190

(a) Draw a scatter diagram.

(03 marks)

(b) Calculate the regression equation.

(06 marks)

(c) Draw the regression line on your scatter diagram.

(01 marks)

(d) Calculate the correlation coefficient (r) between age and LDL.

(06 marks)

(e) Test the level of significance at 0.05 and interpret the correlation coefficient (r) value.

(04 marks)

(Total 20 marks)

Normal distribution

Percentage Points of the Normal Distribution									
P	Z								
90%	0.1257								
80%	0.2533								
70%	0.3853								
60%	0.5244								
50%	0.6745								
40%	0.8416								
30%	1.0364								
20%	1.2816								
10%	1.6449								
5%	1.96								
2%	2.3263								
1%	2.5758								
0.20%	3.0902								
0.10%	3.2905								

	Probak	oility of	exceeding	g the c	ritical va	lue	
d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19.675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27.688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34.805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23.209	29.588	20	31.410	37.566	45.315

The Students t Distribution												
	Distri	bution of t	for given p	probability l	Levels							
		Level of significance for one-tailed test										
df	0.1	0.05	0.025	0.01	0.005	0.0005						
		Level of significance for two-tailed test										
	0.2	0.1	0.05	0.02	0.01	0.001						
1	3.078	6.314	12.706	31.821	63.657	636.619						
2	1.886	2.92	4.303	6.965	9.925	31.598						
3	1.638	2.353	3.182	4.541	5.841	12.941						
4	1.533	2.132	2.776	3.747	4.604	8.61						
5	1.476	2.015	2.571	3.365	4.032	6.859						
6	1.44	1.943	2.447	3.143	3.707	5.959						
7	1.415	1.895	2.365	2.998	3.499	5.405						
8	1.397	1.86	2.306	2.896	3.355	5.041						
9	1.383	1.833	2.262	2.821	3.25	4.781						
10	1.372	1.812	2.228	2.764	3.169	4.587						
11	1.363	1.796	2.201	2.718	3.106	4.437						
12	1.356	1.782	2.179	2.681	3.055	4.318						
13	1.35	1.771	2.16	2.65	3.012	4.221						
14	1.345	1.761	2.145	2.624	2.977	4.14						
15	1.341	1.753	2.131	2.602	2.947	4.073						
16	1.337	1.746	2.12	2.583	2.921	4.015						
17	1.333	1.74	2.11	2.567	2.898	3.965						
18	1.33	1.734	2.101	2.552	2.878	3.992						
19	1.328	1.729	2.093	2.539	2.861	3.883						
20	1.325	1.725	2.086	2.528	2.845	3.85						

	The Students t Distribution											
	Distri	bution of t	for given 1	probability I	Levels							
		Level of s	ignificanc	e for one-i	tailed test							
df	0.1	0.05	0.025	0.01	0.005	0.0005						
		Level of significance for two-tailed test										
	0.2	0.1	0.05	0.02	0.01	0.001						
21	1.323	1.721	2.08	2.518	2.831	3.819						
22	1.321	1.717	2.074	2.508	2.819	3.792						
23	1.319	1.714	2.069	2.5	2.807	3.767						
24	1.318	1.711	2.064	2.492	2.797	3.745						
25	1.316	1.708	2.06	2.485	2.787	3.725						
26	1.315	1.706	2.056	2.479	2.779	3.707						
27	1.314	1.703	2.052	2.473	2.771	3.69						
28	1.313	1.701	2.048	2.467	2.763	3.674						
29	1.311	1.699	2.045	2.462	2.756	3.659						
30	1.31	1.697	2.042	2.457	2.75	3.646						
40	1.303	1.684	2.021	2.423	2.704	3.551						
60	1.296	1.671	2	2.39	2.66	3.46						
120	1.289	1.658	1.98	2.358	2.617	3.373						
00	1.282	1.645	1.96	2.326	2.576	3.291						