## UNIVERSITY OF COLOMBO - SRI LANKA

## FACULTY OF ARTS

SPECIAL DEGREE EXAMINATION IN ARTS (GEOGRAPHY) - PART I
SECOND SEMESTER FINAL EXAMINATION (2019/2020)
GYG 2217 - Statistics

Time: Two (02) Hours
 questions in part 3.

Graph papers will be provided. Use of calculator is allowed

## Part I

1. Answer any 10 questions. Each question carries 2 marks.
i. What is Statistics?
ii. Write down the names of levels of measurement.
iii. Define Variable.
iv. Write down the names of any four measures of variability
v. What is meant by normal distribution?
vi. Define quartiles.
vii. What do you mean by central tendency?
viii. Define data.
ix. Define coefficient of variation
x. What is meant by ogive?
xi. What is meant by kurtosis?
xii. What is meant by skewness?

## Part II

2. Answer any 6 questions. Each question carries 5 marks.
i.. Explain differences between grouped and ungrouped frequency distributions.
ii.. Briefly explain any two methods of collecting primary data
iii. How do you create a box plot?
iv. Explain differences between primary and secondary data
v. Explain differences between census and sample.
vi. Explain differences between critical value and critical region.
vii. Briefly explain discrete and continuous variable.
viii. Briefly explain any two methods of measuring coefficient of correlation.
(Marks $6 \times 5=30$ )

## Part III

3. (i) With the help of the data given in Table No. 1, construct the histogram, frequency polygon, and ogive.

Table No. 1

| Marks | Number of students |
| :--- | ---: |
| $0-9$ | 3 |
| $10-19$ | 13 |
| $20-29$ | 30 |
| $30-39$ | 25 |
| $40-49$ | 14 |
| $50-59$ | 8 |
| $60-69$ | 4 |
| $70-79$ | 2 |
| $80-89$ | 1 |

(ii) Calculate the mean deviation and standard deviation for the following data.
$2,3,6,8,10$, and 11 .
(iii) Calculate the mean, mode and median for the data given in Table No.2.

Table No. 2

| Class Interval | Frequency |
| :--- | ---: |
| $130-134$ | 5 |
| $135-140$ | 12 |
| $140-144$ | 28 |
| $145-149$ | 24 |
| $150-154$ | 17 |
| $155-159$ | 10 |
| $160-164$ | 1 |

4. (i) A doctor believes that the proportions of births in his country on each day of the week are equal. A simple random sample of 700 births from a recent year is selected, and the results are given in Table No. 3. At a significance level of 0.01 , is there enough evidence to support the doctor's claim?

## Table No. 3

| Day | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Births | 65 | 103 | 114 | 116 | 115 | 112 | 75 |

(10 marks)
(ii) A survey of 200 workers was conducted regarding their education (primary, secondary, and tertiary) and the level of their job satisfaction (low, medium, and high). The results are given in the Table No. 4.

Table No. 4

|  | Low | Medium | High |
| :--- | ---: | ---: | ---: |
| Primary | 20 | 35 | 25 |
| Secondary | 17 | 33 | 20 |
| Tertiary | 11 | 18 | 21 |

At 5\% level of significance, examine whether the level of job satisfaction depends on the level of education.
5. The blood pressure ( mmHg ) and ages (years) of 10 patients are shown in Table No. 5.

Table No. 5

| Patient | Age | Blood Pressure |
| ---: | ---: | ---: |
| A | 42 | 98 |
| B | 74 | 130 |
| C | 48 | 120 |
| D | 35 | 88 |
| E | 56 | 182 |
| F | 26 | 80 |
| G | 60 | 135 |
| H | 50 | 120 |
| I | 43 | 110 |
| J | 65 | 140 |

(i) Draw the scatter diagram of blood pressure and age for 10 patients.
(03 marks)
(ii) Find the equation of the regression line.
(iii) Plot the regreession line on the scatter diagram.
(iv) Estimate the blood pressure of a 40 years old patient.
(v) Test the hypothesis: $\boldsymbol{H} \mathbf{1} ; \boldsymbol{\beta}>\mathbf{0}, \boldsymbol{u} \operatorname{sing} \boldsymbol{\alpha}=\mathbf{0 . 0 5}$
(06 marks)
(Total 25 marks)
6. (i) A local telephone company claims that the average length of a phone call is 8 minutes. In a random sample of 58 phone calls, the sample mean was 7.8 minutes and the standard deviation was 0.5 minutes. Is there enough evidence to support this claim at $\alpha=0.05$ ?
(ii) A manufacturer claims that its batteries have an average life greater than 1,000 hours. A random sample of 10 batteries has a mean life of 1002 hours and a standard deviation of 14 hours. Is there enough evidence to support this claim at $\alpha=0.01$ ?
(06 marks)
(iii) The statistics marks from second year students are given in Table No. 6. At $\alpha=0.05$ significance level, test that the mean is equal to 80 .

Table No. 6

| 85 | 81 | 83 | 79 | 91 | 86 | 84 | 97 | 89 | 93 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 92 | 82 | 89 | 77 | 92 | 91 | 80 | 92 | 91 | 94 |
| 90 | 81 | 90 | 86 | 81 | 79 | 83 | 79 | 77 | 81 |

Percentage Points of the Normal Distribution

| $\mathbf{P}$ | $\mathbf{Z}$ |
| :---: | :---: |
| $90 \%$ | 0.1257 |
| $80 \%$ | 0.2533 |
| $70 \%$ | 0.3853 |
| $60 \%$ | 0.5244 |
| $50 \%$ | 0.6745 |
| $40 \%$ | 0.8416 |
| $30 \%$ | 1.0364 |
| $20 \%$ | 1.2816 |
| $10 \%$ | 1.6449 |
| $5 \%$ | 1.96 |
| $2 \%$ | 2.3263 |
| $1 \%$ | 2.5758 |
| $0.20 \%$ | 3.0902 |
| $0.10 \%$ | 3.2905 |

The Students t Distribution

| Distribution of $\boldsymbol{t}$ for given probability Levels |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | Level of significance for one-tailed test |  |  |  |  |  |
|  | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 |
|  | Level of significance for two-tailed test |  |  |  |  |  |
|  | 0.2 | 0.1 | 0.05 | 0.02 | 0.01 | 0.001 |
| 1 | 3.08 | 6.31 | 12.71 | 31.82 | 63.66 | 636.62 |
| 2 | 1.89 | 2.92 | 4.30 | 6.97 | 9.93 | 31.60 |
| 3 | 1.64 | 2.35 | 3.18 | 4.54 | 5.84 | 12.94 |
| 4 | 1.53 | 2.13 | 2.78 | 3.75 | 4.60 | 8.61 |
| 5 | 1.48 | 2.02 | 2.57 | 3.37 | 4.03 | 6.86 |
| 6 | 1.44 | 1.94 | 2.45 | 3.14 | 3.71 | 5.96 |
| 7 | 1.42 | 1.90 | 2.37 | 3.00 | 3.50 | 5.41 |
| 8 | 1.40 | 1.86 | 2.31 | 2.90 | 3.36 | 5.04 |
| 9 | 1.38 | 1.83 | 2.26 | 2.82 | 3.25 | 4.78 |
| 10 | 1.37 | 1.81 | 2.23 | 2.76 | 3.17 | 4.59 |
| 11 | 1.36 | 1.80 | 2.20 | 2.72 | 3.11 | 4.44 |
| 12 | 1.36 | 1.78 | 2.18 | 2.68 | 3.06 | 4.32 |
| 13 | 1.35 | 1.77 | 2.16 | 2.65 | 3.01 | 4.22 |
| 14 | 1.35 | 1.76 | 2.15 | 2.62 | 2.98 | 4.14 |
| 15 | 1.34 | 1.75 | 2.13 | 2.60 | 2.95 | 4.07 |
| 16 | 1.34 | 1.75 | 2.12 | 2.58 | 2.92 | 4.02 |
| 17 | 1.33 | 1.74 | 2.11 | 2.57 | 2.90 | 3.97 |
| 18 | 1.33 | 1.73 | 2.10 | 2.55 | 2.88 | 3.99 |
| 19 | 1.33 | 1.73 | 2.09 | 2.54 | 2.86 | 3.88 |
| 20 | 1.33 | 1.73 | 2.09 | 2.53 | 2.85 | 3.85 |
| 21 | 1.32 | 1.72 | 2.08 | 2.52 | 2.83 | 3.82 |
| 22 | 1.32 | 1.72 | 2.07 | 2.51 | 2.82 | 3.79 |
| 23 | 1.32 | 1.71 | 2.07 | 2.50 | 2.81 | 3.77 |
| 24 | 1.32 | 1.71 | 2.06 | 2.49 | 2.80 | 3.75 |
| 25 | 1.32 | 1.71 | 2.06 | 2.49 | 2.79 | 3.73 |
| 26 | 1.32 | 1.71 | 2.06 | 2.48 | 2.78 | 3.71 |
| 27 | 1.31 | 1.70 | 2.05 | 2.47 | 2.77 | 3.69 |
| 28 | 1.31 | 1.70 | 2.05 | 2.47 | 2.76 | 3.67 |
| 29 | 1.31 | 1.70 | 2.05 | 2.46 | 2.76 | 3.66 |
| 30 | 1.31 | 1.70 | 2.04 | 2.46 | 2.75 | 3.65 |
| 40 | 1.30 | 1.68 | 2.02 | 2.42 | 2.70 | 3.55 |
| 60 | 1.30 | 1.67 | 2.00 | 2.39 | 2.66 | 3.46 |
| 120 | 1.29 | 1.66 | 1.98 | 2.36 | 2.62 | 3.37 |
| $\infty$ | 1.28 | 1.65 | 1.96 | 2.33 | 2.58 | 3.29 |

Distribution of Chi-square for Given Probability Levels

| D.F | Probability |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.995 | 0.99 | 0.975 | 0.95 | 0.9 | 0.75 | 0.5 | 0.25 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 |
| 1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.0158 | 0.102 | 0.455 | 1.32 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 |
| 2 | 0.01 | 0.0201 | 0.0506 | 0.103 | 0.211 | 0.575 | 1.39 | 2.77 | 4.61 | 5.99 | 7.38 | 9.21 | 10.6 |
| 3 | 0.0717 | 0.115 | 0.216 | 0.352 | 0.584 | 1.21 | 2.37 | 4.11 | 6.25 | 7.81 | 9.35 | 11.3 | 12.8 |
| 4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.06 | 1.92 | 3.36 | 5.39 | 7.78 | 9.49 | 11.1 | 13.3 | 14.9 |
| 5 | 0.412 | 0.554 | 0.831 | 1.15 | 1.61 | 2.67 | 4.35 | 6.63 | 9.24 | 11.1 | 12.8 | 15.1 | 16.7 |
| 6 | 0.676 | 0.872 | 1.24 | 1.64 | 2.2 | 3.45 | 5.35 | 7.84 | 10.6 | 12.6 | 14.4 | 16.8 | 18.5 |
| 7 | 0.989 | 1.24 | 1.69 | 2.17 | 2.83 | 4.25 | 6.35 | 9.04 | 12 | 14.1 | 16 | 18.5 | 20.3 |
| 8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 5.07 | 7.34 | 10.2 | 13.4 | 15.5 | 17.5 | 20.1 | 22 |
| 9 | 1.73 | 2.09 | 2.7 | 3.33 | 4.17 | 5.9 | 8.34 | 11.4 | 14.7 | 16.9 | 19 | 21.7 | 23.6 |
| 10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 6.74 | 9.34 | 12.5 | 16 | 18.3 | 20.5 | 23.2 | 25.2 |
| 11 | 2.6 | 3.05 | 3.82 | 4.57 | 5.58 | 7.58 | 10.3 | 13.7 | 17.3 | 19.7 | 21.9 | 24.7 | 26.8 |
| 12 | 3.07 | 3.57 | 4.4 | 5.23 | 6.3 | 8.44 | 11.3 | 14.8 | 18.5 | 21 | 23.3 | 26.2 | 28.3 |
| 13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 9.3 | 12.3 | 16 | 19.8 | 22.4 | 24.7 | 27.7 | 29.8 |
| 14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 10.2 | 13.3 | 17.1 | 21.1 | 23.7 | 26.1 | 29.1 | 31.3 |
| 15 | 4.6 | 5.23 | 6.26 | 7.26 | 8.55 | 11 | 14.3 | 18.2 | 22.3 | 25 | 27.5 | 30.6 | 32.8 |
| 16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 11.9 | 15.3 | 19.4 | 23.5 | 26.3 | 28.8 | 32 | 34.3 |
| 17 | 5.7 | 6.41 | 7.56 | 8.67 | 10.1 | 12.8 | 16.3 | 20.5 | 24.8 | 27.6 | 30.2 | 33.4 | 35.7 |
| 18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.9 | 13.7 | 17.3 | 21.6 | 26 | 28.9 | 31.5 | 34.8 | 37.2 |
| 19 | 6.84 | 7.63 | 8.91 | 10.1 | 11.7 | 14.6 | 18.3 | 22.7 | 27.2 | 30.1 | 32.9 | 36.2 | 38.6 |
| 20 | 7.43 | 8.26 | 9.59 | 10.9 | 12.4 | 15.5 | 19.3 | 23.8 | 28.4 | 31.4 | 34.2 | 37.6 | 40 |
| 21 | 8.03 | 8.9 | 10.3 | 11.6 | 13.2 | 16.3 | 20.3 | 24.9 | 29.6 | 32.7 | 35.5 | 38.9 | 41.4 |
| 22 | 8.64 | 9.54 | 11 | 12.3 | 14 | 17.2 | 21.3 | 26 | 30.8 | 33.9 | 36.8 | 40.3 | 42.8 |
| 23 | 9.26 | 10.2 | 11.7 | 13.1 | 14.8 | 18.1 | 22.3 | 27.1 | 32 | 35.2 | 38.1 | 41.6 | 44.2 |
| 24 | 9.89 | 10.9 | 12.4 | 13.8 | 15.7 | 19 | 23.3 | 28.2 | 33.2 | 36.4 | 39.4 | 43 | 45.6 |
| 25 | 10.5 | 11.5 | 13.1 | 14.6 | 16.5 | 19.9 | 24.3 | 29.3 | 34.4 | 37.7 | 40.6 | 44.3 | 46.5 |
| 26 | 11.2 | 12.2 | 13.8 | 15.4 | 17.3 | 20.8 | 25.3 | 30.4 | 35.6 | 38.9 | 41.9 | 45.6 | 48.3 |
| 27 | 11.8 | 12.9 | 14.6 | 16.2 | 18.1 | 21.7 | 26.3 | 31.5 | 36.7 | 40.1 | 43.2 | 47 | 49.6 |
| 28 | 12.5 | 13.6 | 15.3 | 16.9 | 18.9 | 22.7 | 27.3 | 32.6 | 37.9 | 41.3 | 44.5 | 48.3 | 51 |
| 29 | 13.1 | 14.3 | 16 | 17.7 | 19.8 | 23.6 | 28.3 | 33.7 | 39.1 | 42.6 | 45.7 | 49.6 | 52.3 |
| 30 | 13.8 | 15 | 16.8 | 18.5 | 20.6 | 24.5 | 29.3 | 34.8 | 40.3 | 43.8 | 47 | 50.9 | 53.7 |

