

UNIVERSITY OF COLOMBO, SRI LANKA FACULTY OF TECHNOLOGY

LEVEL II EXAMINATION IN TECHNOLOGY - SEMESTER II - 2019 IA 2016 – ORDINARY DIFFERNCIAL EQUATIONS

Two (02) hours

Answer all the questions.

Electronic calculators are not allowed.

No. of pages: 09

Important Instructions to Candidates

- If a page or part of this question paper is not printed, please inform the supervisor immediately.
- Enter your index number on all pages of the answer script.
- Write the answers to the questions in the space provided in the question paper.
- Electronic devices capable of storing and retrieving text, including electronic dictionaries and mobile phones are not allowed.

Index No:

Q	M
1	
2	
3	
4	
Total	

• • • • • •

PART A

Write your answers within the given space. You may request additional papers if needed.

1.	a) Show that the equation $P(x, y)dx + Q(x, y)dy = 0$ is exact, if $\frac{\partial P(x, y)}{\partial y} = \frac{\partial Q(x, y)}{\partial x}$
	b) Solve the equation $(y^2 + x^2 - 2x + 3)dx + (2xy - y^2 + 10)dy = 0$.
• • • • • • • • • • • • • • • • • • • •	
••••	
• • • • • • • • • • • • • • • • • • • •	

	Index No:
c) Show that the equation $[2(x+y^2)\cos x + \sin x]dx + 2y\sin xd$ which only depends on x and hence find its solution.	
2.	(9 marks)
a) Convert Bernoulli's Equation $\frac{dy}{dx} + p(x)y = q(x)y^2$ to the generation, where $p(x)$ and $q(x)$ are independent of y.	eral form of the first order linear

		Index No:
b) Find the general solution of	$\frac{dy}{dx} - \frac{y}{x} = xy^2.$	
•••••		
•••••	•••••	•••••
		(2 m anka)
		(8 marks)
c) Reduce the following difference $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$	ential equation to the separable for	rm and find the solution.
$y + x \frac{d}{dx} - xy \frac{d}{dx}$		
•••••	•••••	
•••••		•••••

(9 marks)

			of constant of con		and B,	find the	differentia	l equation	of wh	ich
								•••••		
b) l			given below $+2y-3$		e homogo	eneous fo	orm.		(7 mar	 rks)
										••
								• • • • • • • • • • • • • • • • • • • •		
	thod.						ed in Questio			ble
	••••••	••••••	••••••	•••••	•••••	•••••			•••••	· • • • •

Index No:

							Inde	x No:	•••••
	• • • • • • • • • • • • • • • • • • • •		•••••				•••••	•••••	
••••••	•••••	•••••••	•••••••	•••••••	••••••	••••••	••••••	••••••	••••••
•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••
	•••••				•••••	•••••		•••••	•••••
d)	If $f(x,y)$	$= \tan^{-1} \left(\frac{x}{y} \right)$	show that	$\frac{\partial^2 f}{\partial x \partial y} =$	$= \frac{\partial^2 f}{\partial y \partial x} .$				(7 marks)
••••••	•••••	•••••••	•••••••	•••••••	••••••	••••••	••••••	••••••	••••••
•••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••
	• • • • • • • • • • • • • • • • • • • •	•••••				•••••		•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••
				•••••					
	• • • • • • • • • • • • • • • • • • • •								
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••	••••••
•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••
				••••••					
•••••	•••••	•••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••
•••••			•••••	•••••	•••••	•••••	•••••	•••••	

PART B

This part consists of fifteen multiple choice questions. Each question is followed by four choices. Read each question carefully and underline the CORRECT answer. There is only one CORRECT answer for each question.

1) The ordinary differential equation $2x^2 \frac{dy}{dx} = x^2 + y^2$ can be transformed into the separable form of,

a)
$$2x \frac{dv}{dx} = v^2 - 2v + 1$$

b)
$$2x\frac{dv}{dx} = \frac{1}{2}v^2 - 2v + 1$$

c)
$$2x \frac{dv}{dx} = v^2 + 2v + 1$$

d)
$$2x \frac{dv}{dx} = v^2 + 2v - 1$$

2) All the singular points of the differential equation $(y^2 - 1)\frac{dy}{dx} = x(x^2 + 1)$ are

a)
$$(0, 1), (0, -1)$$

c)
$$(-1, 0), (1, -1)$$

$$d) (1, 1), (-1, -1)$$

3) An integrating factor of the differential equation $x^2 \frac{dy}{dx} - 2xy = 4x^4 - 3x^2y$ is

a)
$$\frac{1}{x^2}$$

b)
$$e^{2x}$$

c)
$$e^{-2x}$$

- d) None of the above
- 4) If $y = e^{4x} \sin 3x$, what is the value of $\frac{dy}{dx}$, when $x = \frac{\pi}{3}$?

a)
$$\frac{dy}{dx} = 3e^{\frac{4\pi}{3}}$$

$$b) \frac{dy}{dx} = 0$$

c)
$$\frac{dy}{dx} = -3e^{\frac{4\pi}{3}}$$

d)
$$\frac{dy}{dx} = -e^{\frac{4\pi}{3}}$$

Index No:

5) $Y = Ae^{\left(x + \frac{x^2}{2}\right)} - 1$, where A is a constant, is a solution of the differential equation of,

a)
$$Y' = (1+y)(1+x)$$

b)
$$Y' = (1 - y)(1 + x)$$

c)
$$Y' = (1+y)(1-x)$$

d)
$$Y' = (1-y)(1-x)$$

6) What is the differential equation which gives the solution of $y^2 = 4a(x+a)$?

a)
$$y^2 \left(\frac{dy}{dx}\right) + 2xy \left(\frac{dy}{dx}\right)^2 - y^2 = 0$$

b)
$$y^2 \left(\frac{dy}{dx}\right)^2 - 2xy\frac{dy}{dx} - y^2 = 0$$

c)
$$y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \left(\frac{dy}{dx}\right)^2 - y^2 = 0$$

d) None of the above.

7) The differential equation P(x, y)dx + Q(x, y)dy = 0 is said to be exact if,

a)
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

b)
$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

c) There exists
$$u$$
 such that $\frac{\partial P}{\partial x} = \frac{\partial^2 u}{\partial x \partial y}$

d) There exists
$$u$$
 such that $\frac{\partial Q}{\partial y} = \frac{\partial^2 u}{\partial y \partial x}$

8) What is the first derivative of the equation of $y = e^{k \sin^{-1} x}$?, where k is a constant.

$$a) \frac{dy}{dx} = \frac{ky}{\sin^{-1} x}$$

$$b) \frac{dy}{dx} = \frac{ky}{\sqrt{1-x^2}}$$

$$c) \frac{dy}{dx} = \frac{ky}{\sqrt{\sin^{-1} x}}$$

d)
$$\frac{dy}{dx} = -\frac{k}{\sqrt{1-x^2}}$$

9) The partial fraction of $\frac{5x^2 + 17x + 15}{(x+2)^2(x+1)}$ is,

a)
$$\frac{2}{x+2} + \frac{1}{(x+2)^2} + \frac{3}{x+1}$$

b)
$$\frac{2}{x+2} - \frac{1}{(x+2)^2} + \frac{3}{x+1}$$

c)
$$\frac{2}{x+2} - \frac{1}{(x+2)^2} - \frac{3}{x+1}$$

d)
$$\frac{3}{x+2} + \frac{1}{(x+2)^2} + \frac{2}{x+1}$$

10) Find the solution of $\int \frac{1}{2\sqrt{4-x^2}}$.

a)
$$\frac{1}{4}\sin^{-1}\left(\frac{x}{2}\right) + C$$

b)
$$\frac{1}{4}\sin^{-1}(x) + C$$

c)
$$\frac{1}{8}\sin^{-1}\left(\frac{x}{2}\right) + C$$

d)
$$\frac{1}{2}\sin^{-1}\left(\frac{x}{2}\right) + C$$

Where *C* is an arbitrary constant.

11) The order and the degree of the differential equation $\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \frac{d^2y}{dx^2}$ respectively are,

12) Solution of the differential equation $\frac{dy}{dx} = \frac{x^2 - 1}{y + 5}$ is

a)
$$\frac{x^3}{3} + x - \frac{y^2}{2} - 5y = C$$

b)
$$\frac{x^3}{6} - x + \frac{y^2}{2} - 5y = C$$

c)
$$\frac{x^3}{3} - x - \frac{y^2}{2} - 5y = C$$

d)
$$\frac{x^3}{6} + x + \frac{y^2}{2} + 5y = C$$
,

Where *C* is an arbitrary constant.

13) Which of the following differential equation is exact?

a)
$$x \sin y dy + \frac{1}{2}x^2 \cos y dx = 0$$

b)
$$\frac{xy-1}{x^2y}dx - \frac{1}{xy^2}dy = 0$$

c)
$$(5x^2y - 3x^2y^3)dx + (3xy^2 - 5x^2y^2)dy = 0$$

d) $(3x^4y^2 - x^2)dy + (4x^3y^3 + 2xy)dx = 0$

d)
$$(3x^4y^2 - x^2)dy + (4x^3y^3 + 2xy)dx = 0$$

14) The solution of the differential equation $\frac{dy}{dx} - x \tan(y - x) = 1$ is,

Hint: Take t = y - x

a)
$$\ln \sin(y-x) = x + C$$

b)
$$\ln \sin(y-x) = \frac{x^2}{2} + C$$

c)
$$-\ln\cos(y-x) = \frac{x^2}{2} + C$$

d)
$$\ln \tan(y-x) = \frac{x^2}{2} + C$$

Where *C* is an arbitrary constant.

15) The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + x \sin \frac{y}{x}$ is,

$$Hint: \left(\int \frac{dx}{\sin x} = \ln \tan \frac{x}{2} \right)$$

a)
$$\ln \tan \frac{y}{2x} = x + C$$

b)
$$\ln \tan y = x + C$$

c)
$$\ln \tan x = x + C$$

d)
$$\ln \tan \frac{y}{2x} = C$$

Where *C* is an arbitrary constant.

(25 marks)