University of Colombo, Sri Lanka

Faculty of Arts

Second Year Examination in Arts, Part I – 2016/2017 First Semester, Final Examination GYG 2117 – Statistics (Time : 2 Hours)

Answer three questions only

Graph papers will be provided. Use of calculator is allowed

(i) Define the term "Statistics".

1.

2.

(ii)

(02 marks)

(03 marks)

(iii) Explain differences between following with examples.

How is Descriptive Statistics varied from Inferential Statistics?

(a) Parameter and Statistic

(b) Population and Sample

(c) Data and Variable

(d) Continuous Variable and Discrete Variable

(e) Nominal Scale and Ordinal Scale

(15 marks) (Total marks 20)

(i) What are the differences between Measures of Central Tendency and Measures of Variability.

(02 marks)

(ii) The heights in inches of 22 students are as follows:
58, 58, 59, 60, 62, 64, 64, 65, 66, 66, 66, 66, 68, 68, 69, 70, 71, 72, 72, 74, 75, 77
Calculate the Mean, Median, Mode and Standard Deviation.

(06 marks)

I.

Mark (X)	Frequency (F)
70	25
73	27
75	20
79	15
80	13
Total	100

(iii) The marks obtained by 100 students in a statistical test are given below. Find the average mark.

(04 marks)

(iv) The following are the weight obtained by 50 students in statistics class.

Using the data, construct the Histogram and Frequency Polygon.

Weight (kg)	Frequency	
20 - 30	10	
30 - 40	12	
40 - 50	15	
50 - 60	8	·
60 - 70	5	
Total	50	

(08 marks)

(Total 20 marks)

3.

(i) What is meant by Significance Test?

(02 marks)

(ii) Explain difference between Null Hypothesis and Alternative hypothesis.

(03marks)

(iii) Test the following hypotheses.

(a) $H_0: \mu = 30, H_1: \mu \neq 30, n = 25, \bar{x} = 30.2, \sigma = 1.8, \alpha = 0.05$ (b) $H_0: \mu = 100, H_1: \mu < 100, n = 40, \bar{x} = 98.5, \sigma = 4.0, \alpha = 0.05$ (c) $H_0: \mu = 10, H_1: \mu \neq 10, n = 25, \bar{x} = 11.5, s = 3.0, \alpha = 0.05$

- (d) H₀: $\mu = 20$, H₁: $\mu > 20$, n = 50, $\overline{x} = 18.5$, s = 3.5, $\alpha = 0.01$
- (e) H₀: $\mu = 50$, H₁: $\mu \neq 50$, n = 60, $\bar{x} = 48.9$, s = 4.0, $\alpha = 0.01$

(15 marks) (Total 20 marks)

4.

Following table shows in kilograms the respective weights of 10 fathers and their eldest sons.

Weig	ht of father (X)	70	68	72	69	73	67	· 75	71	73	72
Weig	ht of son (Y)	73	71	73	70	74	71	73	70	76	72
i)	Construct a scatter	diagram								(05	mark
ii)	Find the regression	equatio	n.								mark
iii)	Compute the total	variation	, explai	ined var	iation ar	nd unex	plained	l variatio	n.		
iv)	Estimate the weigh	t of son	of a fat	her wei	ght is 78	•				(05	i mark
										(02	2 mark
									(Total 20) mark
(i)	What is the correla	tion coe	fficient	?							
										(02	2 mark
(ii)	State the methods	which us	ed to ca	alculate	correlat	ion coet	fficient	methods			
										(02	2 mark
iii)	Following table s	hows as	signme	ent mar	ks and	final ex	kam m	arks ear	ned by	10 stud	ents f
	statistics.										

Student	1	2	3	4	5	6	7	8	9	10
Assignment marks	75	88	90	60	50	77	79	72	67	85
Final exam marks	70	80	85	55	45	70	75	70	65	80

(a) Find the correlation coefficient using any method.

(08 marks)

(b) Test the hypothesis: H_1 : $B_1 > 0$, using $\alpha = 0.05$.

(c) Interpret your results.

(06 marks)

(02 marks) (Total 20 marks) (i) Briefly discus the components of the time series analysis.

(ii) The rainfall data recorded for three years are given below.

(a) Calculate the trend values using the Least Squares method.

(b) Draw the trend line on the rainfall data.

(c) Calculate the seasonal index for each month.

(04 marks)

(08 marks)

(04 marks)

(04 marks)

(Total 20 marks)

Month		Year	
	2014	2015	2016
January	3.94	4.66	7.91
February	0.70	8.92	10.06
March	11.33	3.66	11.47
April	17.27	16.33	19.16
May	17.35	38.89	20.62
June	25.48	9.22	14.12
July	17.16	1.06	18.43
August	4.69	12.56	8.27
September	20.04	11.08	13.85
October	17.53	21.81	26.43
November	18.78	8.67	9.60
December	11.23	22.26	10.11

Percentage Points of th	he Normal Distribution			
refeemage romas or a	no Homan Distribution			
Р	Z	· ,		
90%	0.1257			
80%	0.2533			
70%	0.3853			
60%	0.5244			
50%	0.6745		•	
40%	0.8416			
30%	1.0364			
20%	1.2816			
10%	1.6449			
5%	1.9600			
2%	2.3263			
1%	2.5758			
0.2%	3.0902			
0.1%	3.2905			
	-£			

The Students t Distribution

Dist	ribution	n of t to	r given	probabi	lity Leve	els
	Le	vel of s	ignificar	ice for o	ne-tailea	d test
df	0.10	0.05	0.025	0.01	0.005	0.0005
	Le	vel of s	ignifica	nce for t	wo-tailed	d test
	0.20	0.10	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.598
3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.992
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.767

Distribution of *t* for given probability Levels

	24	1.318	1.711	2.064	2.492	2.797	3.745
-	25	1.316	1.708	2.060	2.485	2.787	3.725
-							
	26	1.315	1.706	2.056	2.479	2.779	3.707
	27	1.314	1.703	2.052	2.473	2.771	3.690
-	28	1.313	1.701	2.048	2.467	2.763	3.674
	29	1.311	1.699	2.045	2.462	2.756	3.659
-	30	1.310	1.697	2.042	2.457	2.750	3.646
							···
	40	1.303	1.684	2.021	2.423	2.704	3.551
	60	1.296	1.671	2.000	2.390	2.660	3.460
1	120	1.289	1.658	1.980	2.358	2.617	3.373
	00	1.282	1.645	1.960	2.326	2.576	3.291

7

. •